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Abstract

An elastic body immersed in a fluid will ring when

isonified by sound whosL frequency is the same as one of

the resonances of that body. Correspondence has been

established between these normal mode resonances of the

body and the individual circumferential waves predicted

by creeping wave theory. Insonifying the target by a

relatively long sinusoidal wave train, with a narrow

spectrum centered around, or away from, a selected reso-

nance frequency, results in a series of superimposed

responses consisting of the specular reflection and

succession of creeping waves arriving after repeated

circumnavigations of the body which, at resonance only, add

in phase to generate the ringing response. Echoes from

spherical targets are analyzed in this fashion, and are also

associated with the resonance poles in the complex frequency

plane, obtained by us in the form of contour plots.
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I. Introduction

The ringing of reson trics in scund scattering experirments

from elastic cylinders and spheres has first been mentioned by

Faran I . In the computational results for scattered sound

2
pulses obtained by Hickling , ringing effects are evident but

have not been discussed by him. Subsequent studies of pulse

scattering from rigid spheres by Rudgers 3 , or from elastic

4
cylinders by Veksler , observed theoretically certain transient.

effects in the backscattering of long pulses, interpreting them

as a coherent superposition of echo pulses specularly returned

from the target, and circumferential surface waves arising after

successive circumnavigations. (For rigid spheres, these surface

waves are exclusively of external, or "creeping" type, while for

elastic bodies they are predominantly internal 
5).

A recent series of experimental studies on elastic cylinders

6,7
by Ripoche et al. has been devoted to the measurement of

transients as they occur in the scattering of long incident pulses.

Together with theoretical analysis8 , these studies have developed

the "Method of Isolation and Identification of Resonances (MIIR)"

in which the transients trailing the main reflected pulse at a

resonance frequency (i.e., the "ringing"), but absent off

resonance, have been employed as a highly sensitive means for

obtaining the resonance spectrum of elastic cylinders or shells,

thus contributing significantly to the emerging technology on

9
the classification of submerged targets
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Previous work by ont, , t. present _.ihors and

collaborators 1 0 13 on transient scattering from a sphere

has shown, for the case (,f sh( rt incident pulses, how the

scattering amplitude c.in be expressed as a residue series

over its complex-frequency poles, the latter representing the

resonant eigenfrequencies of the target. The broad spectrum

of a short pulse, stretching over many poles, necessitated the

inclusion of a large number of residues in the mentioned calcu-

lation. By employing a long pulse with a spectrum narrower

than the spacing between poles, however, it is possible to

selectively excite a given resonance by choosing the carrier

frequency to coincide with the resonance frequency, or not to

excite it by choosing a carrier frequency different from a

resonance frequency. As a consequence, and as demonstrated by

Ripoche's work6 - 8, it is possible to excite one resonance at a

time, a procedure which may be employed for target identifica-

8,14
tion purposes

In the present work, we study the excitation of elastic-

sphere resonances by long sinusoidal wave trains, and investigate

how the initial and final transients in the echo which appear

near a resonance frequency can be interpreted by multiply-circum-

navigating circumferential wave trains. The relation of initial

transients, and of the interference of reflected and circum-

navigating pulses, to the acoustic form function of the target

is established. In this connection, we also obtain contour plots

of the scattering function in the complex frequency planes (an
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extension of :he form fltct i,n into the complex domain) for

aluminum, tungsten carLisle, "nd lucite spheres which greatly

aid in the understanding of the real-frequency form function,

and of the transient effects appearing in the returned pulse

trains.

II. Steady State Theory, and Pole Contour Diagrams

Theoretical expressions for the acoustic scattering

amplitude from an elastic sphere have been given in the

15
literature . A plane wave

= ei(kz- wt) (1)

incident on an elastic sphere of radius a centered at the origin,

with k =W./c, leads to a far-field backscattering amplitude

Psc = (a/ 2 r-)ei(kr - t) f(x) , (2)

with a form function

= ~~ X)-i (3b)

where x = ka denotes the non-dimensional frequency of sound

in the ambient fluid.

The coefficientsB are given by

A zidss-d11 A , (4a)
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where

2 )-

(4b)

= 2 L 2 +1) . ()

A, =0)

and where jn(x) are the spherical Bessel functions, and

h n(1) the spherical Hankel functions of first kind.

Here, i and is denote the densities of the surrounding fluid

(which will be taken as water with 4 = l.v/cm3 and of the

sphere, respectively; further, y = (c2 /c) x and z (cs/c) x

contain the longitudinal and shear speeds ct , c , of the

sphere material, respectively

A..
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Form functions ha' c 1-.ri calculated as a function of real

frequency for tunqsten corbide, alnminum, and lucite spheres

using the material pardF2Lers shown in Table I. in addition,

the values of lf(x)I wcrc also obtained in the form of contour

plots over a region of the complex-x plane. Our results are

displayed in Figs. 1-3, showing in the top portion the form

function modulus IJ (x)j plotted over the real frequency axis,

and in the bottom portion contour plots of If (x)I over the

complex frequency plane. Figure 1 refers to tungsten carbide,

Fig. 2 to aluminum, and Fig. 3 to lucite. While the form

function plots for real x of spheres of these materials are

well-known, our contour plots reveal important new aspects of

I. (x)( . Analogous contour plots were also obtained for the

16,17case of radar scattering

The dark areas of the figures denote large values of

l(x) , and contain the poles of the form function. The three

prominent pole chains, converging in the lower -left corners of

Figs. 1-3, are due to the resonances of external (Franz, or

creeping) surface waves as they span the sphere's circumference

with successively increasing (half-) integer numbers of wave-
10-12

lengths . Above the least-damped (i.e., having smallest

imaginary parts) Franz-pole (F) chain one recognizes in Figs. I

and 2 a much more widely spaced chain of much narrower poles

18corresponding to the Rayleigh wave1 , an internal surface wave

with speed comparable to the bulk wave speeds in the material,



faster than that of the Fran:" ,:&s (hence the wider spacing)

For lucite (Fig. 3), the identification of the Rayleigh (R)

poles is less unambiguous, since several pole chains crowd

here close to the real frequency axis. In fact, further pole

chains (closer to the real axis) are also contained in Figs.

1 and 2, but are hardly visible, since these poles [which are

due to Whispering-Gallery (WG) wave resonances J are so narrow

that they have often not been registered by our contouring

procedure. Examples of these are given in Fig. 10 of

Reference 15; in addition, Fig. 4 shows a blow- -f the

contour diagram of Fig. I (tungsten carbide) b veen x = 13.3

and 14.3 in which a Rayleigh pole (lower right ] a WG pole

(upper left) are both visible, together with the interference

features they cause in the form function.

It is interesting to see from Figs. 1-4 that every R and

WG pole seems to be accompanied by a zero in the form function

(contained in the white areas), while for F poles, such an

association is not strictly one-to-one, apparently. Extra-

polating all these contour diagrams to the real axis results

in the form function plots of Figs. 1-4 (top). The inter-

ference features of these have been analyzed earlier18 ,

but they now become more easily understandable by comparison

with the contour plots. The deep minima in the form function

are evidently due to the R-zeros (rather than the R-poles

themselves), and the narrow interferences are due to the WG

zeros and/or poles. The physical origin of these inter-

ferences can be attributed to the destructive interference



of the R-wave echoes with [e,1-.-I-refected echo (see

also an analogous effect in the refoection of sound from

19
fluid layers ) , while in the case of a lucite sphere (Fig.

3), the presence of peaks rather han interference minima in

the form function can be seen from the associated contour

plot to be due to the greater closeness of a pole chain to

the real axis, rather than that of its accompanying zeros.

III. Theory of Transients, and Numerical Results

An incident plane-wave pulse can be represented by the

Fourier integral

Pinc (z,t) = JG(k)e ik(z-ct) dk/27r. (5)

A sinusoidal wave train

Pr'0c + O0E- (6a)
elsewhere

with carrier frequency W. and time duration t has a spectrum
pr

G~):I-e _-e P6b
(6b)

where wedesignate Ctp /a, x = a wo/c. Introducing

backscattered form functions (x) and ?' (x) by



i~ x) fi'.xCa)i = 1),

results in the expressions for the pulsed case:

~(-~'~~ fJr),(8a)

____~' ~(ab)

where we have introduced a non-dimensional time variable

= (ct-r)/a. In the calculations to follow, Eqs. (8) were

evaluated using numerical integration.

Figure 5 shows in the center part an incident

pulse train, having a length r = 25 (i.e., covering ap

length of 25 radii), and a carrier frequency xo = 14.07.

The top portion of the figure depicts its spectrum, G(x),

superimposed on the form function I f(x) I of a tungsten

carbide sphere. We chose x0 to coincide with the deep

minimum of I f(x) I caused by the R-zero of Fig. 4. The

bottom portion of the figure shows the scattered pulse; it

arrives at the observer at r=-2, this being due to its

reflection at the vertex of the sphere which the incident

pulse reaches before it attains the plane through the center



of the spzhere, z = 0. A*t r an initial tran-i-nt, tht

scattered tulse rtaci.. -  strcn_:!v constricted c:uas:-

"steady-state" amplitude ... ith constricticn beinz dZ e

the fact that the steady-state for function fx) has a

deep minimum at the selected center frezuency xo . After a

duration of 25 units of Z (equal to that of the incident

pulse), the scattered signal shoots up to its original value,

and from there on it consists of a slowly decaying final

transient that can be attributed to the ringing of the R-pole

at x = 14.07, which has thus been selectively excited by our

2
incident pulse. Note that in Hickling's study , the steady-

state amplitude had been associated with interference features

in the form function, but he did not discuss initial or final

transients, clearly visible in his results.

In Fig. 6, the incident pulse has been shifted to a center

frequency of xo=13.7, i.e. in between the R- and the WG- pole

(see Fig. 4). Since here the form function is close to its

normal level (-'1) between two resonances, the scattered pulse

has a shape close to that of the incident pulse, apart from

slight initial transients and a slight tail. This residual

ringing is probably due to the overlap of the first sidelobe of

G(x) with the xo=14.07 R-pole (it has the same decay constant

as the ringing in Fig. 5); had we chosen an incident pulse witn

a narrower spectrum (as was the case in the Ripoche experi-

ments 6-8), this ringing should have been completely absent here.
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Closer inspection o-11t:e ta4 in F i. 5 Kind also Fia. 6

reveals that it contains a series c_ -f -:cndir : steps; this

is demonstrated in Fi.-. 7 which represe: s a blow-up of the

initial (top) and final (bottom) transient recions of Fig. 5

(with the 6- scale displaced again so that the pulse starts

at ' = 0). Veksler4 has found and discussed these steps

previously, but they are also visible in earlier experimental

20long-pulse scattering results by Neubauer et al.

IV. Physical Interpretation

The physical situation is best discussed using the schematic

graph of Fig. 8. The large rectangle denotes the envelope of a

rectangular incident pulse (as in the center portion of Figs.

5,6), which essentially coincides with the shape of the

specularly reflected pulse, due to minimal dispersion of the
21

specularly reflected wave . As discussed above, the head of

this specular pulse arrives at the observer at t =-2. The

dotted rectangles indicate further wave trains that penetrate

the sphere, get reflected from its rear backside vertex, and

reach the observer with short time delays (due to the high

interior sound speeds) after a possible series of back-and-

forth bounces with ever-decreasing amplitude, as indicated.

These interior reflections will not be our concern here. In

addition, there will also be present circumferentially-traveling

wave trains with rectangular shapes not too different from that

of the incident pulse (in spite of some dispersion 1-12), which,

for backscattering,proceed to the observer after 1/2, 3/2, 5/2...
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circumrnavications of .,e's circur fcrence, with

successive!, ., e:creasi-r. ! ut-es due t, radiation loss)

as indicated in Fig. 8 (small solid rectanales). Their

successive arrival ti:-ces are at -C= 7r, 37, 5 7r..., multiplied

by the ratio of external and surface wave speeds, as shown.

Actually, there exists a large number of such surface wavE

(R,WG) which in general, after each circumnavigation, are out

of phase with each other, so that the overlap of their

rectangles in Fig. 8 will effectively cancel their contribu-

tion. However, if the carrier frequency coincides with an

eigenfrequency of the sphere, which corresponds to a certain

surface wave producing a phase match with itself after each

18
circumnavigation , then all the successive circumferential

wavetrains in Fig. 8 corresponding to that surface wave (only)

will add in phase. This leads to a step-wise decaying tail

in region (iii) of Fig. 8 which represents the ringing of the

resonance at the frequency in question, but also to an initial

transient in region (i) of Fig. 8, stepped similarly as the

final transient (tail), in which the successively arriving

circumferential wave heads also add in phase. It now depends

whether the resonance in question interfereswith the specularly

reflected wave destructively (the more usual case for metal

targets) or constructively: in the first case, there will be

a descending staircase in region (i) of the reflected signal

leading down to the reduced steady-state amplitude of regior

(ii), as is clearly evident in the bottom portion of Fig. 5.

Ai
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In the seconi case, th I t niti - rtns n ts (i) will. form an

ascending staiircase 1e.JIrI; o in tu z'ented stead,-state

amplitude in recion (ii) , as e.q. in the center portions of

Figs. 17 and 13 of Refrrence 2. T'he bottom portion of our

Fig. 6 represents an in-between situation, with some augmenta-

tion visible.

Figure 8 shows that the width of the steps is given by

= 27rc/c (9a)

Resonances originate if, for the case of the sphere, a half-

integer number of wavelengths22 X of the ith surface wave

span the circumference of the sphere,

(n+l/2)A, = 27- a. (9b)

Since = 2'T cz /AJ , this leads to

(n+l/2) cl /c = ka, (9c)

showing that the ratio of surface wave speed to sound speed

in the external fluid can be obtained from reading off the ka-

difference of adjacent resonance features caused by the ith

surface wave in the form function:

cI /c = A (ka) n. (9d)

With c = 1482m/c assumed in Fig. 1, this leads to an average

speed of the Rayleigh wave in the vicinity of the ka=14.07 resonance

(note its dispersion!) of ct = 4366 m/s, or to a step-width of

Ar - 2.13, in perfect agreement with Fig. 7.
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V. Conclusions

We have performed i r upnerical study, accompanied by a

physical interpretation, on the backscatterina by a solid

elastic sphere of finite-lenjth sinusoidal acoustic wave trains,

chosen of sufficiently long duration so as to permit the

selective excitation of a given resonant vibration of the

sphere. While the scattering of short pulses has previously

been shown10- 1 2 to produce a sequence of individual, well-

separated scattered pulses due to reflected and multiply-

circumnavigating surface waves, it is seen here that long-

pulse scattering leads similarly to a sequence of overlapping,

long reflected and surface wave trains which give rise to

several types of interference phenomena, to wit:

(a) At a resonance frequency, the succession of multiply-

circumnavigating pulses builds up in phase, but interferes with

the preceding reflected pulse mainly destructively (typically,

for metal targets). We obtain a picture of an initially square

reflected pulse, which due to these initial transients builds

down step-wise to a quasi-stationary, reduced amplitude value.

(If the interference with the reflected wave were constructive,

this being the case for some Whispering-Gallery waves in metals,

and more generally for light-weight targets such as lucite, a

build-up to an augmented quasi-stationary amplitude value would

occur; this was observed by Hickling 2).

(b) Still at resonance, after the termination of the

reflected pulse a step-wise decaying tail of multiply-circum-

navigating, constructively interfering surface waves is observed.
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(c) Moving off rsonant, he surface waves aet out of

phase and be-in to interferc distuctiel, thus causina both

the initial transients and the tail to disappear.

In a related development, we have been able to obtain

contour diagrams of the form function modulus for spheres of

various materials, plotted over the complex frequency plane,

which dramatically exhibit the structure of complex poles and

zeros of the given target and hence lead to a better

understanding of the interferenec features in the form function

when plotted vs. real frequencies.

The main accomplishment of this work lies, we believe, in

a demonstration that with properly chosen incident pulses of

long duration, we can selectively excite individual resonances

of a target, and study their properties via their induced

ringing. A physical explanation of how this ringing is synthe-

sized by the repeated circumnavigations of the circumferential

surface wave which causes the resonances has been provided.

The feasibility and potential applications of this technique

for an identification of submerged elastic targets via their

resonance spectrum8- 1 4 have been convincingly demonstrated in

the experiments of Ripoche et al.
6 8

Portions of this work were reported 2 3 at the Meeting of the

Acoustical Society of America, San Diego, CA, November 1983.

An analogous study for the case of radar scattering has also

been performed by us 2 4 .

. .. . . . £
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Material parameters for elastic spheres

Materia (g/cm3 cI (m/sec) c s(m/sec)

Tungsten Carbide 13.8 6960 4195

Aluminum 2.7 6370 3120

Lucite 1.182 2680 1380
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Fig. 1. Form function :ow,.us If:x)) plotted vs. real

frequencies (ta) and as a contcur Plot over complex

frequencies (botto)K , for tungsten carbide (c=1482m/s)

Fig. 2. Form function modulus If(x)l plotted vs. real

frequencies (top), and as a contour plot over complex

frequencies (bottom), for aluminum (c=1482 m/s).

Fig. 3. From function modulus If(x)I plotted vs. real

frequencies (top), and as a contour plot over complex

frequencies (bottom), for lucite (c = 1482 m/s).

Fig. 4. Enlarged portion of Fig. 1 (tungsten carbide) with

c = 1482 m/s, showing one Rayleigh and one Whispering-

Gallery pole.

Fig. 5. Top: spectrum of incident wave train superimposed on

the form function of a tungsten carbide sphere; center:

incident wave train; bottom: scattered pulse. Carrier

frequency coincideswith Rayleigh-wave interface dip at

x = 14.07 in the fonr function.

Fig. 6. Same as Fig. 5, but with carrier frequency at x. = 13.7,

not coinciding with any resonance frequencies.

Fig. 7. Enlarged portions of the initial transient region (top)

and final tail region (bottom) of Fig. 5, showing

staircase effect.

Fig. 8. Schematic view of superposition (without any coherent or

incoherent additions) of specular (large solid rectangle),

penetrating and multiply internally reflected (dotted

rectangles), and circumferential wave trains (small solid
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